ISO/IEC JTC1 SC32 WG3 BCN-036R1

Title: BCN-036R1: Select list EXCLUDE

Date: 2025-09-17

Author: Peter Eisentraut

Status: change proposal

References:

[Foundation IWD] 9075_9IWD15-02-Foundation_2025-06-30.pdf
[UKB-014R1] "Minutes of ballot resolution meeting", 2005-11-28
[WLG-064R1] "Column Selection by Exclusion", Hugh Darwen, 2005-11-17
Abstract

Add EXCLUDE clause to <select list>.

Revision history

R1: Added section "Review of previous proposal".

1 Introduction

This proposal adds a clause to the SELECT list "all columns" wildcard to exclude some columns
from the wildcard expansion. For example:

create table t2 (foo int, bar int, baz int);

select * exclude (bar) from t2;
results in a result set that only has columns "foo" and "baz". Similarly, the qualified-asterisk variant
select t2.* exclude (bar) from t2;

would have the same result.

In my anecdotal experience, this is among the top three features requested for addition to SQL to
improve ease of use.

There are existing implementations:
- H2'
 Databricks®
* BigQuery®
* Snowflake*

e DuckDB®

https://www.h2database.com/html/grammar.html#wildcard_expression
https://docs.databricks.com/aws/en/sql/language-manual/sql-ref-syntax-qry-star
https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#select_list
https://docs.snowflake.com/en/sql-reference/sql/select
https://duckdb.org/docs/sql/expressions/star.html#exclude-clause

b wWwN -

Page 1 of 9

https://sd.iso.org/documents/open/2643590b-3370-4faf-804a-bb3755430136
https://sd.iso.org/documents/open/9d52ac08-944a-40f4-b2a5-5a27fd359788
https://sd.iso.org/documents/open/e30da852-9982-4696-8010-47da32893d73

ISO/IEC JTC1 SC32 WG3 BCN-036R1

It is apparent from this selection that this feature is particularly useful for analytics use cases.
There is a catch: These implementations do not agree on the keyword to use:

* H2: EXCEPT

* Databricks: EXCEPT

* BigQuery: EXCEPT

* Snowflake: EXCLUDE

* DuckDB: EXCLUDE

This proposal uses EXCLUDE. The reason is that EXCEPT is already used for another purpose, and
while that does not directly conflict with the new proposed use, it is awfully close. Furthermore,
many implementations allow SELECT without a FROM clause, and there is some interest in
standardizing that (LO FND-A51), in which case SQL text like

SELECT * EXCEPT ...
could be very confusing and difficult to parse.

If this proposal ends up in the standard, existing implementations that use EXCEPT could easily
add support for EXCLUDE as an alias. The reverse would likely be more difficult.

2 Review of previous proposal

It was brought to my attention that this change was already previously proposed by [WLG-064R1]
and not adopted. The arguments in that paper were similar to mine. It additionally had some
arguments on the academic side. The minutes in paper [UKB-014R1] summarize the discussion of
the paper:

Following discussion of the paper a majority position emerged that there should be no
enhancements to the functionality around SELECT *, and that although the paper was
technically acceptable, it should be rejected.

On a vote, approval of the paper was rejected 1-4-0 (UK for, Canada, Germany, Japan,
USA against; Australia absent).

It was agreed that Seq#063 should be marked as resolved with no action

This does not record the arguments against the paper, but I suspect that they were similar to the
arguments against WLG-022 discussed at the same meeting (and recorded in those minutes just
above the quoted text).

I think the reality has shown that this feature continues to be popular and in demand. Seeing that
there are a growing number of implementations and some potential questions about the details of
the behavior (see below), it seems worth trying to standardize it.

Note that [WLG-064R1] proposed the use of the "EXCEPT" keyword, unlike my proposal. Other
than that, it appears to agree pretty much with my proposal in terms of the semantics, except that it

Page 2 of 9

ISO/IEC JTC1 SC32 WG3 BCN-036R1

does not want to accept qualified exclusion elements in a <qualified asterisk> (see my example 9
below). The actual implementation is quite a bit different (and simpler) in my paper.

3 Discussion

Here are some test cases for the proposed functionality.

Use the following table definitions:

create table t1 (foo int);
create table t2 (foo int, bar int, baz int);

create table s1.t3 (a int, b int);

Then the following would happen:
Example 1:

select * exclude (bar) from t2;

Result columns are: foo, baz

Example 2:
select * exclude (bar) from t1;

This is an error: "bar" does not exist in t1. (All existing implementations agree on that. You
cannot exclude non-existing columns.)

Example 3:
select * exclude (foo) from t1;

Causing * to expand to an empty select list is an error. (Implementations that allow zero-
column tables might choose to allow this as an extension. (H2 allows this. Databricks
crashes.)) (But see example 11 below.)

Example 4:
select * exclude () from t1;

An empty exclude list is an error. (Implementations agree.)

Example 5:
select * exclude (bar, bar) from t2;

Duplicate entries in the exclude list are an error. (Implementations agree.)

Example 6:
select * exclude (foo) from t1, t2;

This is an error because "foo" is ambiguous, just like "select foo from t1, t2" is ambiguous.
(One existing implementation (DuckDB) allows this and excludes both "foo" columns. The
remaining cited implementations reject this.)

Page 3 of 9

ISO/IEC JTC1 SC32 WG3 BCN-036R1

Example 7:
select * exclude (bar) from t1, t2;

Result columns are "foo", "foo", "baz".

Example 8:

select * exclude (t2.bar) from t1, t2;
select * exclude (ti1.foo) from t1, t2;

select * exclude (s1.t3.a) from s1.t3;

Any qualification that is allowed in the select list is also allowed in the EXCLUDE list.
(Snowflake and BigQuery do not allow any qualifications in the EXCLUDE/EXCEPT list.)

The general idea is entries in the exclude list and entries in the select list are resolved in the same
way, and what is valid or invalid in one should be the same in the other. So notionally,

select SOMETHING, * exclude (SOMETHING) ...
would be equivalent (up to column order) to
select * ...
Example 9:
select t2.* exclude (t2.foo) from t2;

The qualification here is pretty much redundant, but most implementations accept it, and it
keeps the semantics of the EXCLUDE list the same for the qualified and the unqualified
asterisk.

Example 10:
select t2.* exclude (t1.foo) from t1, t2;
This is an error.

Example 11:
select foo, ti1.* exclude (foo) from t1;

The qualified asterisk resolves to an empty column list, but the overall select list is not
empty, so this is allowed. (Implementations agree.)

4 Proposal for [Foundation IWD]

4.1 Changes to subclause 4.27.15, "Known functional
dependencies in a <query specification>"

1. Modify the fourth paragraph as follows:

Page 4 of 9

ISO/IEC JTC1 SC32 WG3 BCN-036R1

Let S be a set of columns of R such that every element of S arises fremtheuse-ef<asterisk>
i-SE-er by the specification of a column reference as a <value expression> simply
contained in SL. [...]

4.2 Changes to subclause 5.2, "<token> and <separator>"
1. Add "EXCLUDE" to the list of reserved words:

<reserved word> ::=

| EVERY | EXCEPT | EXCLUDE | EXEC | EXECUTE |

4.3 Changes to subclause 6.7, "<column reference>"
1. Modify syntax rule 7) b) ii) as follows:

ii) If QQ is not grouped, or if QCR is contained in the <select list exclude> or in the <from
clause> or the <where clause> simply contained in QQ, then QCR is an ordinary column
reference.

4.4 Changes to subclause 7.13, "<group by clause>"
1. Modify syntax rule 7 as follows:

7) Let SL1 be obtained from SL by replacing every <asterisk> <select list all columns> and
<asterisked identifier chain> using the syntactic transformations in the Syntax Rules of
Subclause 7.16, “<query specification>".

4.5 Changes to subclause 7.16, "<query specification>"
1. Changes to the Format:

<query specification> ::=
SELECT [<set quantifier>] <select list> <table expression>

<select list> ::=
<asterisk><select list all columns>

Page 5 0of 9

ISO/IEC JTC1 SC32 WG3 BCN-036R1

| <select sublist> [{ <comma> <select sublist> }...]
<select sublist> ::=

<select 1list all columns> ::=
<asterisk> [<select 1list exclude>]

<select 1list exclude> ::=

EXCLUDE <left paren> <column reference> [{ <comma> <column
reference> }...] <right paren>
<qualified asterisk> ::=

<qualified all columns>
| <all fields reference>

<qualified all columns> ::=

<asterisked identifier chain> <period> <asterisk> [<select list
exclude>]

2. Add a new syntax rule:

5) If <select list exclude> is specified, then no column shall be referenced more than once
by the <column reference>s contained in the <select list exclude>.

3. Change syntax rule 7 as follows:
7) If the <select list> is a <select list all columns>, then:
Case:

a) If the <select list all columns> “#2 js simply contained in a <table subquery> that is
immediately contained in an <exists predicate>, then the <select list all columns> is
equivalent to a <value expression> that is an arbitrary <literal>.

b) Otherwise;:
Case:
i) If the <select list all columns> contains a <select list exclude>, then:
1) Let SLE be the <select list exclude>.
2) Let SLEC be the sequence of column references contained in SLE.
ii) Otherwise, let SLEC be an empty sequence.

tThe <select list all columns> “*2 is equivalent to a <value expression> sequence in which
each <value expression> is a column reference that references a column of T that is not a
column identified in SLEC, and each column of T is referenced exactly once. The columns
are referenced in the ascending sequence of their ordinal position within T.

4. Change syntax rule 10 as follows:

10) If <asterisked-identifier-ehain> <qualified all columns> QAC is specified, then:

Page 6 of 9

ISO/IEC JTC1 SC32 WG3 BCN-036R1

a) Let IC be an the <asterisked identifier chain> contained in QAC.

10) g) Case:

i) If the basis is a <table or query name> or <correlation name>, then let TQ be the table
associated with the basis.

Case:
i) If QAC specifies <select list exclude>, then:
1) Let SLE be the <select list exclude>.
2) Let SLEC be the sequence of column references contained in SLE.

3) Every column reference in SLE shall reference a column of TQ that is not a
common column of a <joined table>.

ii) Otherwise, let SLEC be an empty sequence.

The <select sublist> is equivalent to a <value expression> sequence in which each <value
expression> is a column reference CR that references a column of TQ that is not a common
column of a <joined table> and that is not a column identified in SLEC. Each column of TQ
that is not a common column shall be referenced exactly once. The columns shall be
referenced in the ascending sequence of their ordinal positions within TQ.

ii) Otherwise let BL be the length of the basis of IC.

QAC shall not contain <select list exclude>.

Case:

5. Add a note after syntax rule 10:

Note NNN — If after the syntactic transformations specified by the above Syntax Rules, the
<select list> is empty, it no longer conforms to the Format of <select list> and is therefore
invalid.

6. Change syntax rule 18 as follows:

18) A column C of TQS is readily known not null if C is defined (after performing syntactic
transformations to eliminate <asterisk> <select list all columns> and <qualified asterisk>).

[...]

7. Add a conformance rule:

Page 7 of 9

ISO/IEC JTC1 SC32 WG3 BCN-036R1

7) Without feature ONNN, "Select list EXCLUDE", conforming SQL language shall not
contain a <select list exclude>.

4.6 Changes to subclause 8.11, "<exists predicate>"

4.7 Changes to subclause 9.20, "Transformation of query
specifications"

1. Change syntax rule 4 as follows:

4) If the <select list> of GWQ imrediately simply contains <asterisk> <select list all
columns> or simply contains <qualified asterisk>, then Syntax Rules of this Subclause are
applied with GWQ as QUERY SPEC IN; let GWQ2 be the QUERY SPEC OUT returned
from the application of those Syntax Rules; otherwise, let GWQ2 be GWQ.

5 Language opportunities
* Consider whether an EXCLUDE clause could be applied to <all fields reference>.

6 Checklist

1 Ir.lteractions with other concurrent proposals identified and editorial assistance |see also
given BCN-035

2. |Concepts n/a

3. |Access Rules n/a

4. |Conformance Rules, including the relevant Annexes yes

5. |Lists of statements by category n/a

6. |Collation coercibility determination for changes related to character strings n/a

7. |Closing Possible Problems when a proposal resolves them none

8. |Any new Possible Problems clearly identified yes

9. |Reserved and non-reserved keywords yes

10. |Information and Definition Schemas n/a

Page 8 of 9

ISO/IEC JTC1 SC32 WG3 BCN-036R1

11. |Implementation-defined and —dependent Annexes n/a
12. |Incompatibilities Annex n/a
1. |Table of identifiers used by diagnostics statements n/a
2. |Embedded SQL bindings and host language implications n/a
3. |Dynamic SQL issues: including Dynamic descriptor areas n/a
4. |PSM impact none
5. |Schemata impact none
6. [XML impact none
7. |MDA impact none
8. |PGQ impact none

— end of the paper —

Page 9 of 9

	1 Introduction
	2 Review of previous proposal
	3 Discussion
	4 Proposal for [Foundation IWD]
	4.1 Changes to subclause 4.27.15, "Known functional dependencies in a <query specification>"
	4.2 Changes to subclause 5.2, "<token> and <separator>"
	4.3 Changes to subclause 6.7, "<column reference>"
	4.4 Changes to subclause 7.13, "<group by clause>"
	4.5 Changes to subclause 7.16, "<query specification>"
	4.6 Changes to subclause 8.11, "<exists predicate>"
	4.7 Changes to subclause 9.20, "Transformation of query specifications"

	5 Language opportunities
	6 Checklist

